博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
PAT A1126 Eulerian Path (25 分)——连通图,入度
阅读量:4960 次
发布时间:2019-06-12

本文共 2386 字,大约阅读时间需要 7 分钟。

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from )

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 125 71 21 32 32 43 45 27 66 34 56 45 6

Sample Output 1:

2 4 4 4 4 4 2Eulerian

Sample Input 2:

6 101 21 32 32 43 45 26 34 56 45 6

Sample Output 2:

2 4 4 4 3 3Semi-Eulerian

Sample Input 3:

5 81 22 55 44 11 33 23 45 3

Sample Output 3:

3 3 4 3 3Non-Eulerian
 
1 #include 
2 #include
3 using namespace std; 4 const int maxn=510; 5 int g[maxn][maxn]; 6 int deg[maxn]; 7 int n,m; 8 int num=0; 9 bool vis[maxn]={
false};10 void dfs(int st){11 if(vis[st]==false){12 vis[st]=true;13 num++;14 for(int i=1;i<=n;i++){15 if(vis[i]==false && g[st][i]==1){16 dfs(i);17 }18 }19 }20 }21 int main(){22 scanf("%d %d",&n,&m);23 for(int i=0;i
View Code

注意点:直接根据题目字面意思实现就好了。首先看是不是连通图,再看入度为奇数的有几个,没有就是Eulerian,有2个就是semi,其余为non

转载于:https://www.cnblogs.com/tccbj/p/10431474.html

你可能感兴趣的文章
HCA数据下载
查看>>
Codeforces 954 G. Castle Defense
查看>>
反射机制-----------通过它获取类中所有东西 出了注释
查看>>
svn的一个连接
查看>>
position:fixed和z-index:1
查看>>
unity, 延迟执行代码
查看>>
mysq找不到pid无法正常启动
查看>>
php实现抓取网站百度快照和百度收录数量的代码实例
查看>>
Qt那点事儿(三) 论父对象与子对象的关系
查看>>
jar 命令 打包装class文件的文件夹
查看>>
node.js express配置允许跨域
查看>>
JSP EL表达式详细介绍(转)
查看>>
要想找出正好包含5个字符的名字
查看>>
用js把图片做的富有动态感,并对以后需要用着的属性进行封装
查看>>
ArcGIS Runtime For Android 100.3天地图不加载问题
查看>>
线性表
查看>>
【转】解决eclipse新导入工程无法run as server
查看>>
【转】struts1.2的action参数配置
查看>>
快速幂&快速乘
查看>>
WebLogic 12c 多节点Cluster静默安装
查看>>